
Large Scale Data Engineering: Scientific Plagiarism

Max Raams
m.raams@student.vu.nl

2711022

William Ford
w.a.ford@student.vu.nl

2712009

Lars de Jong
l.m.w.de.jong@student.vu.nl

2707612

1. INTRODUCTION
The Cambridge English Dictionary defines plagiarism as:

”the process or practice of using another person’s ideas or
work and pretending that it is your own”[4]. Being one of
the most serious forms of scientific misconduct, plagiarism is
far from valued in the scientific community. When exposed,
a scientist or journalist that has committed plagiarism will
almost certainly lose their job. Because of this reason, it is
important that scientific papers are checked on plagiarism
so it is avoided at all costs.

The goal of this project is to build a big data processing
pipeline that is able to crosscheck millions of existing sci-
entific papers on direct plagiarism and mosaic plagiarism.
Direct plagiarism is when a text is copied word-for-word
from another source, while mosaic plagiarism changes the
words or structure while still using the essence of a sentence
from another source[3].

The data set used for this project is provided by Sci-Hub,
a controversial project aiming to “remove any barrier which
impeding the widest possible distribution of knowledge in
human society”[5]. The Sci-Hub website provides mass ac-
cess to research papers from manifold disciplines. An archive
of approximately 2.4TB of scientific papers has been ex-
tracted for the big data analyses that will be executed during
this project.

The remainder of this paper is structured as follows: Sec-
tion 2 is devoted to a summary of previous work related to
this project, discussing the algorithms and techniques used
to analyse and process the data set. The goals of the project
are established in Section 3. It contains questions that will
hopefully be answered by the outcome of the project. In
Section 4, the setup of the project is discussed. It goes over
how the original data set is structured and what the result-
ing data set looks like. Then, the pipeline that was used
to transform the original data set into the desired one is
discussed and the results are showcased. Section 5 draws
conclusions based on the research questions and the result-
ing data. Finally, Section 6 reflects upon the course of the
project and discusses briefly what could be improved in a
following iteration of the project.

2. RELATED WORK
To be able to analyse the data effectively and efficiently,

it is important to look at some relevant work in the various
fields regarding computer science. This section discusses the

two most relevant scientific papers this project was based
upon and how the techniques which they describe are put
to use.

2.1 Smith-Waterman Algorithm
Comparing two texts in the search for possible plagiarism

requires an algorithm which computes a similarity score be-
tween two strings. One of such algorithms is the Smith-
Waterman algorithm[7]. This dynamic programming algo-
rithm was first designed for use in the field of molecular bi-
ology to find similar sub-sequences between two DNA, RNA
or protein sequences[6]. However not its primary intended
use, it can also find similar regions between two bodies of
text by comparing characters, words or paragraphs instead
of nucleic acids. This is how the algorithm will be put to
use in this project.

The Smith-Waterman algorithm performs a local sequence
alignment on two lists of elements. It does so using an align-
ment matrix of size n×m, where n is the number of elements
in the first list and m is the number of elements in the sec-
ond list. The first column and row of the matrix are initial-
ized to zero, after which the rest of the matrix is populated
with values calculated with the formula in Figure 1. Essen-
tially, the matrix represents a context-sensitive comparison
between all elements of the two lists, as is demonstrated in
the example in Figure 2.

Hij = max


Hi−1,j−1 + s(ai, bi),

maxk≥1{Hi−k,j −Wk},
maxl≥1{Hi,j−l −Wl},
0

Figure 1: The formula used to calculate scores of
each cell in the Smith-Waterman alignment matrix,
where s(a, b) is the similarity score between elements
a and b, Wk is the penalty of a gap with length k,
and H is the resulting matrix.

Finally, after all values in the matrix are calculated, a
back trace is executed. The trace starts at the cell with the
highest value in the matrix, following the arrows represent-
ing the chosen cases backwards, and ending at a cell with
value 0. The cells visited in this back trace are the opti-
mal local alignment. The highest value in the matrix is the
similarity score of the optimal alignment segment of the two
input lists.

1



Figure 2: An example alignment matrix gener-
ated using the Smith-Waterman algorithm. Two
RNA strings ‘ATCGAA’ and ‘CATAC’ are com-
pared. The values in the matrix are calculated using
the formula in Figure 1 with a similarity score of 5
and a gap penalty of -4. The blue arrows indicate
the chosen case from the formula, the red arrows in-
dicate the highest-scoring alignment path: ‘AT-C’.

This local alignment algorithm seems to be the perfect
fit for a plagiarism checking pipeline. It can identify a sub-
sequence in the two input texts and quantify how similar it
is, without taking into account everything else about the two
texts that is not similar. However, it does not scale up very
well. With an algorithmic complexity of O(nm) (quadratic)
it is very ill-advised to do many big comparisons using this
algorithm. For a data set with millions of papers, like this
project, some efficiency steps need to be made.

2.2 Latent Dirichlet Allocation
The next goal is to find a way to minimise the number of

comparisons between papers that need to be done, without
sacrificing too much accuracy on the plagiarism detection.
Latent Dirichlet Allocation (LDA) offers a solution to this
problem.

LDA is an iterative topic modeling algorithm that per-
forms an unsupervised classification with a variable number
of topics on a corpus of text documents[2]. It is similar to
the k-means algorithm, but LDA can assign documents to
multiple classes, making it more realistic for this use case
than k-means, where the sets of documents are disjoint.

Latent Dirichlet Allocation approaches a document as a
collection of words, in which the order or any other gram-
matical structure in the text is not taken into account. Using
this ‘bag of words’ approach, LDA calculates in iterations
which words are likely to appear together in a document;
it forms ‘topics’. These topics can be described as a set of
terms and the probabilities that a document d should be in
that topic, given that the given term is present in d. As an
example: it’s safe to say a document containing the words
‘cell’, ‘protein’, ‘gene’, and ‘human’ has a high probability
of being a research paper in the field of molecular biology,
while a document containing the words ‘voltage’, ‘circuit’,
‘power’, and ‘device’ has a high probability of being a re-
search paper in the field of electrical engineering. These
were two real examples of topics that LDA formed on the
data set for this project.

LDA can do this for any predefined number of topics k
and does so without prior set up of the topics, unsuper-
vised. By using LDA, it is possible to add a column to
the data set containing the topics a document belongs to.

This column can be used as a condition while forming the
cross join: only cross-check documents that have at least
one matching topic. This approach will probably not sac-
rifice too much accuracy on the plagiarism check, because
it follows the notion of it being futile to check papers that
are fundamentally dissimilar. For example, it is highly un-
likely that papers on medical research will have plagiarized
from papers in the computer science field. Secondly, this ap-
proach will greatly improve the performance of the pipeline.
Instead of having to crosscheck all n documents in the data
set, which would result in n2 comparisons, only documents
within topic cluster have to be compared. This results in a
‘sum-of-squares’ number of comparisons, which, in practice,
will always be smaller than the total square number of com-
parisons. The more topics are used, the smaller the number
of documents per topic becomes and thus, the smaller the
total number of comparisons becomes. Using too many top-
ics however, might lead to LDA losing accuracy and finding
patterns where there are none. Experimentation with the
value of k is crucial here.

3. RESEARCH QUESTIONS
The goal of this project is to create a pipeline that is able

to detect plagiarism within a huge data set of research pa-
pers. Hence, the main research question will be: “What
is a proper pipeline to check for plagiarism among
a large number of papers?”. The following hypothesis
can be formulated for this research question: plagiarism in
the scientific community is considered a serious violation of
academic integrity. Therefore, it is not expected that scien-
tists will commit plagiarism very often, and when they do,
they will probably be careful. It is not expected that there
will be many occurrences of large text sections overlapping
between two papers without a source cited.

Using the data produced with this pipeline, further re-
search can be done. Some of the main research questions to
be answered with this data will be:

• Which kinds of overlaps between research papers can
be found?

• How scalable is the pipeline that was used to generate
the data? Were the proper algorithms / tools used?

• Has the amount of overlap/plagiarism in scientific re-
search papers changed over the years?

• What are the largest parts of overlapping text in the
data set?

• Are there any authors that are repeatedly reported for
overlapping text?

The first question will be answered by analyzing the var-
ious overlaps the pipeline will find, and discussing patterns
that might be found within those overlaps.

For the second question, an evaluation of the pipeline
is necessary. This evaluation should take into account the
weak spots of the pipeline and if/how those weak spots can
be fixed in a following iteration of the project.

The third question can be answered using a simple line
graph on the final data set, comparing the discovered over-
laps with the year that they were published. The hypothe-
sis: the amount of plagiarism is expected to grow over the

2



years, especially since the world wide web started to become
popular.

The fourth question will be answered using a table, show-
ing the papers which have the top ten largest overlap of the
data set. It will also be possible to review the overlapping
text.

The final question will be answered using a bar plot which
will show the names of the authors and the amount of over-
lapping text.

4. PROJECT SETUP

4.1 Input Data
The data set consists of 3.938.483 papers equally divided

over 4.761 zip archives. The papers are all PDF-formatted
and may contain from 1 to over 100 pages. There are a
few papers in the data set with an extremely large number
of pages, for example: a book with over 300 pages. An
overview of the page count distribution can be seen in Figure
3.

Figure 3: Page count distribution over the full data
set. Papers above 50 pages are left out of the graph
to show more detail in the 0 to 20 pages range.

Some papers seem to be duplicates of other papers. They
have different file names, but their content is exactly the
same. Some of the papers in the data set also seemed to
be corrupted, as it was not possible to open them. Many
papers also contain graphs, tables and images. Some papers
even consist of only images. Because this project will only
focus on text mining, plagiarism of graphs and other images
is left out of scope.

Before the papers can be processed, they first need to be
converted from PDF files to plain text data. To do this, an
optical character recognition program (OCR) will be used.
This will be addressed further in Section 4.3.1.

For some of the papers, important information can be
found in the metadata of the PDF file. Sometimes, it con-
tains a list of authors, the title and the publish date. This
is not the case for all papers though, making it very difficult
to reliably use without discarding a large part of the data
set.

Instead of using the metadata for information, another
option is to use Digital Object Identifiers (DOI) which are
included in the filename of the papers. These are unique
identifiers which can be used to look up more information
about the paper in a third party database. Though there

are still papers for which some information cannot be found,
this is a much more reliable method compared to using the
metadata. The information in this database includes the
title, the author(s), the publish date and much more[8]. For
this project only the following fields will be used:

• Title: string that contains the title of the paper

• Authors: list of objects that contain the given name
and family name of the authors of the paper

• Publish date: string that contains the date the pa-
per was published, formatted following the ISO 8601
guidelines [9]

• Type: a string describing the type of the paper (e.g.
‘journal-article’, ‘book-chapter’ or ‘proceedings-article’)

• Publisher: string that contains the name of the insti-
tution that published the paper

• Journal: string that contains the name of the journal
that the paper was published in

All of these data fields will be joined with the initial ex-
tracted data and put into parquet files, an efficient data
storage format, so it later can easily be read into a Spark
data frame.[1]

4.2 Output Data
The output data for this project will consist of three spark

data frames, stored in parquet files. These three data frames
will contain the following information:

At the start of the data analysis phase (as will be dis-
cussed in section 4.3.3), each paper will be categorized into
different topics using Latent Dirichlet Allocation (see: Sec-
tion 2.2). Each of these topics will have a unique ID and a
list of words that are related to that topic. Each word also
has a probability score that indicates the probability that a
document belongs to the topic, given that it contains that
word. This “Topics” table is one of the output data tables.

The second data product is the cleaned data frame rep-
resentation of the input PDF data. This data frame will
contain all the necessary information about all the papers
the pipeline could gather such information about: the DOI,
title, page count, publish date, language, document type,
publisher, journal, authors, cleaned text (as described in
Section 4.3.2) and the topics, which is an array of foreign
keys for the first data product.

The third and final data product is the data frame con-
taining the detected overlaps between the compared papers.
This data frame contains the following fields:

• DOI1: the DOI of the first paper in the comparison.

• DOI2: the DOI of the paper that the first paper is
being compared with. Both DOI fields function as a
foreign key for the second data product.

• Score: the Smith-Waterman similarity score of the
comparison between the two papers.

• Overlap1: the overlap between the two papers from
the perspective of paper 1.

• Overlap2: the overlap between the two papers from
the perspective of paper 2.

3



4.3 Pipeline

4.3.1 Phase 1: Data Extraction
As mentioned before, the initial data set consists of many

PDF files, stored in zip archives. The goal of the first phase
is to extract the data from these files so that it can be pro-
cessed more easily throughout the rest of the pipeline.

First of all, a list of all file names is created and put into
a data frame, together with the number of the zip archive
they are a part of. These numbers are later used to partition
the extraction of the PDF files. Then, more columns are
added to the data frame by joining it with a data frame
containing more information on every DOI. Papers which
are not present in the DOI data set are dropped from the
data set.

Using the PyPDF2 package for Python, all PDF files are
then converted to a plain text. This package is not as ac-
curate as some other packages, but it allows for extraction
from the uncompressed zip archives without having to unzip
the archive. This is important for such a large data set, as
it speeds up this phase significantly. Some other packages
were able to retrieve much more accurate results, but also
took more time to process a single paper. During this step,
the PDF reader also extracts the page count of the papers.
Papers with a large number of pages will take a lot of com-
putation time in later phases, therefore the papers with over
100 pages are thrown away. As can be seen in Figure 3 this
will only be a very small percentage of the entire data set.
If one of these steps fails for a particular paper, for instance,
an error that occurs during the text extraction, the paper is
discarded from the data set.

After extracting the bodies of the papers and putting
them into a data frame, one extra column is added con-
taining the language that the paper was written in. This
language is determined using the langdetect Python pack-
age which checks the body of the given paper. As can be
seen in Figure 4, nearly 85% of the papers in the data set are
written in English, followed by German with approximately
11%, French with a bit over 1% and 4% for all other possible
languages, including “could not detect”. In a following step,
LDA will categorize papers in topics using the words in their
bodies. Therefore, it would be best to separate languages
from each other. Since German and the other languages are
just a small fraction of the data set compared to the English
papers, they are thrown away in this phase.

Figure 4: Language distribution over the full data
set.

4.3.2 Phase 2: Data Cleaning
Now that all of the approximately 4 million scientific pa-

pers have been extracted into a single data frame, it is nec-
essary to compress and clean the data for better algorithm
performance on both time and accuracy. First of all, dupli-
cate bodies are removed. As mentioned in Section 4.1, some
papers have identical bodies, even though they have differ-
ent filenames. These are mistakes on the data supplier’s end
and need to be filtered out to prevent false positives. After
that, each paper goes through a list of steps:

First of all, every character in the body of a paper is
converted to lowercase. This is done to increase the recall of
the algorithm in phase 3; capitalization is not important to
look for with plagiarism. Also, all punctuation and excessive
white space is removed since those serve no purpose for the
algorithm either.

After that, stop words are removed from the corpus. These
are words that appear frequently, but provide little informa-
tion, such as “I, me, we, our, am, could, most, other, very,
so”. Removing these words will considerably reduce the size
of the data set and increase the accuracy of the algorithm
in the next phase, since the data that remains will be more
descriptive of the actual content of the paper. The ”Nat-
ural Language Tool Kit” (NLTK) Python package contains
a ready-made list of some of the most common stop words.
It also contains functions to filter a corpus on that list effi-
ciently. It is possible to extend NLTK’s built-in list of stop
words to create a more domain-specific list to filter on. To do
this, a new list is created with the words from all the avail-
able documents in the data set after phase one, with their
document frequencies. The document frequency is a met-
ric that defines the number of documents in a data set that
contain a certain term. At the top of this list will be words
that appear in many different papers, and thus provide lit-
tle specific context to the individual papers. It would be
futile to check them for plagiarism. This new list is filtered
to only contain words above a certain document frequency
threshold. The list now contains words such as: “however,
result, study, research, thus, also, condition”. Then, the list
is appended to the stop words list.

Finally, all verbs and nouns of the text body are stemmed.
Stemming is the action of reducing a word to its root form
or “stem”. Plural nouns become singular, conjugated verbs
become unconjugated. This step can also be achieved us-
ing the functions provided by the ”Natural Language Tool
Kit” Python package. After this step, the phase 3 algorithm
should become much better at finding mosaic plagiarism, be-
cause it can focus more on the meaning and function of the
word in a sentence, instead of looking at how it is spelled
exactly. After all, the words “colors”, “coloring”, “colored”
and “color” should not be differentiated between for this use
case. The results of this phase will put into a new data frame
and stored in a new parquet file, so that it does not disturb
the raw output from phase 1 in case the phase 2 cleaning
algorithm needs to be tweaked after the fact.

4.3.3 Phase 3: Data Analysis
In this final phase, the actual plagiarism detection can

finally start. But before doing so, the data will first need to
be be clustered using topic analysis.

The topic analysis is done using the LDA algorithm dis-
cussed in Section 2.2. Every paper will be assigned a max-
imum of three topics. For all papers, the probability that

4



the paper is part of a topic is calculated for every topic. By
setting a threshold of 0,3 on that probability, a paper can
only be part of a maximum of three topics. Some papers
will not be assigned any topics, as they might not contain
any words that give them a high enough probability to cross
the threshold of being part of any topic. These papers likely
do not contain any valuable information, and thus can be
discarded from the data set.

After the data has been divided into topics, the papers
can be compared for plagiarism using the Smith-Waterman
algorithm, as discussed in Section 2.1. For every topic, all
papers will be compared with each other. To speed up this
process, papers are only compared with newer papers, so
that each combination of papers is only checked once. This
also makes sure that the newest paper of the two is consid-
ered the one of which the author plagiarised.

4.3.4 Results
In total, 35930 sections of overlapping text were found. A

good example of overlapping text found by the pipeline can
be seen in Figure 5. More examples can be found on the
visualisation website.

The difference in amounts of plagiarism per year can be
seen in Figure 6. There are also authors that repeatedly
have overlapping text with older papers. The ten authors
that have the most sections of overlapping text can be found
in Figure 7.

Figure 5: Example of overlapping text found by
the described pipeline. The text section on the left
comes from ”P. Bonfils, P. Avan, P. Landais, M.
Erminy and B. Biacabe. Statistical evaluation of
hearing screening by distortion product otoacoustic
emissions”, the text section on the right comes from
”P. Bonfils and A. Uziel. Clinical applications of
evoked acoustic emissions: results in normally hear-
ing and hearing-impaired subjects”. These papers
have an author in common, which might explain the
overlap.

4.3.5 Visualisation
Because it is difficult to think of exciting ways to visu-

alise overlapping text, the visualisation website will visualise
more than just the results. It guides the user through the
entire pipeline used to get to the end result, visualising every
step along the way with understandable examples.

Figure 6: Graph showing the amount of overlapping
text found over the years. The amount has clearly
skyrocketed over the past two decennia.

Figure 7: Graph showing the authors with the most
overlapping text sections found in older papers.
Note that overlapping text does not necessarily im-
ply plagiarism.

The goal of the visualisation website is to provide access
to semi-advanced information in the field of big data to peo-
ple who are interested in it, but do not have the background
knowledge in computer science to understand complex pa-
pers on the matter. The challenge is to format and describe
the matter in layman’s terms, while also not insulting the in-
telligence of the reader by over-explaining certain concepts.

The lay-out of the website is as follows:

• The home page provides an introduction of the subject
matter to the user and shows the pipeline phases as
boxes to click on.

• The cleaning page shows what exactly happens to the
text in the cleaning phase. It goes over both global
cleaning, and local cleaning. The local cleaning section
follows a running example of how a small text section
would be cleaned by the pipeline, from stripping white
space to word stemming.

5



• The LDA page describes how the LDA algorithm cre-
ates clusters based on topics, what these topics look
like and how they are used in the pipeline to improve
efficiency. The page also contains a colorful bubble
chart, showing a few examples of topics from the pipeline,
and the five words most relevant to those topics.

• The Smith-Waterman page visualises how the algo-
rithm is able to find similar text sections between two
papers. It does this by showing, step-by-step, how the
alignment matrix is filled up with values and how those
values are back tracked to find text similarity, similar
to Figure 2.

• Finally, the results page shows a set of examples of
the actual results of the project. The results are cat-
egorized into different tables. Clicking on the DOI of
a paper opens a new tab on Sci-Hub where the user
can read the paper itself. Clicking somewhere else on
a row in a table shows the overlap that the pipeline
managed to find.

The website went through a few iterations before ending
up the way it has ended up. This was done with the help of
a small testing group of the target audience: people who do
not have any prior knowledge in big data but are interested
in learning. The feedback was directly used to gain insight
in the language that should or should not have been used,
certain topics that needed more explanation and the topics
that should have been left out due to the high level of diffi-
culty (e.g. the method with which LDA actually generates
the topics).

The website can be found in the Databricks File System at
dbfs:/mnt/group21/website.tar.gz, or online on https://max-
r.nl/LSDE.

5. CONCLUSIONS
Though the created pipeline is able to detect overlapping

text sequences accurately, it is not scalable enough for bigger
data sets. The main problem seems to be the limited num-
ber of topics the chosen LDA implementation could handle
without crashing. This failed to lower the number of com-
parisons to be made to a feasible value.

The overlap that was found by the pipeline can be divided
into different categories, which can be grouped in two major
groups: false positives and true positives.

There are many types of false positives that were found,
the most frequently occurring type being overlap in the ref-
erences of a paper. This should not be considered plagia-
rism, due to the standardized nature of reference sections in
scientific papers. Approximately 95% of the overlaps that
were detected fell under this category. Besides that, other
kinds of false positives include university names, department
names, copyright statements, template front pages and other
sections of text usually part of a specific format.

Besides that, there were also a few true positives that were
found. Whether the overlaps could actually be considered
“plagiarism” is up for debate, but the fact is that they are
specific sections of text that are suspiciously similar to each
other. These true positives were uncommon, and were often
only one or two sentences. It makes sense that actual pla-
giarism only occurs rarely, as it is frowned upon greatly and
could get one in a lot of trouble.

The largest overlap score found was 399. This overlap was
a reference to a paper with many different authors. This is
definitely not plagiarism however, as discussed before. This
overlap, and others, can be viewed on the visualisation web-
site.

From Figure 6, we can conclude that the amount of over-
lapping text sections increased with the growth of the pop-
ularity of the internet. Especially the year 2000 seems to
be a pivot, the amount of overlapping text has increased
massively since then. This could have to do with the fact
that the internet makes the papers more accessible. Another
possible, and maybe more likely, explanation could be the
increase of the amount of online papers in general. If more
papers exist, it is likely that the amount of overlapping text
also increases.

There are definitely authors who have multiple cases of
overlapping text on their name, as visible in Figure 7. The
author with the most overlapping text sections has 243 cases.
Of course, once again, this does not necessarily imply that
they have committed plagiarism 243 times, if at all.

6. DISCUSSION
The goal for this project was to be able to find direct and

mosaic plagiarism in a huge data set of scientific research
papers. What was achieved, is the ability to find overlap-
ping text sections between papers, possibly with some slight
differences. It has proven to be difficult to make a clear dis-
tinction between what is plagiarism, and what is not. Some
improvements could be made across all phases of the pipeline
described in this report.

First of all, in the extraction phase, improvements could
be made to the plain text extraction method from the PDF
files. The PyPDF2 python package which was used was fast,
and often worked very well. However, with a rather large
number of papers, it would fail to recognize spaces between
words, resulting in a long string of words joined together.
How many documents suffered from this issue is hard to
tell, since there was no real way to detect if text extraction
had suffered from this issue, other than crosschecking every
word in the text body with an English dictionary, which
would be much too time consuming. Many other packages
had similar issues, and packages that did not have these
issues were often much too slow to use on such a large data
set. This phase could be improved upon by using a better
plain text extraction method, which seems to be difficult to
come by.

For the cleaning phase, an improvement would be to re-
move the references sections from the papers. A large num-
ber of the false positives the pipeline detected were found in
these sections due to their standardized nature. Removing
them would increase the accuracy and speed of the pipeline
significantly. Other possible text sections to remove would
be copyright statements, university names and other section
types that are likely to contain overlapping text that would
not be considered plagiarism. Sadly, it remains difficult to
identify, and thus filter these out of a text body.

The analysis phase is the largest bottleneck of this pipeline
in terms of scalability for many reasons. The main method
of reducing the number of comparisons is using LDA. By
dividing the papers into different topic clusters, only the
papers with the same topics need to be compared with each
other. The LDA implementation used in the pipeline was
very limited in the number of topics that it could create

6



without throwing ‘out of memory’ exceptions. The biggest
improvement would be to either use an LDA implementa-
tion that allows for more clusters to be created, or to use a
different clustering algorithm entirely. The ability to create
more clusters would significantly reduce the number of com-
parisons necessary, improving the scalability of the pipeline
significantly.

Another possible improvement that could be made is to
write the user defined functions throughout the pipeline in
Java instead of Python. Python code is generally known to
be slow, because it is an interpreted language instead of a
compiled one. The best function to apply this change to is
the Smith-Waterman function, because the analysis phase
is the slowest part of the pipeline. The Smith-Waterman is
used a lot in this phase. Optimizing it has a lot of impact
on the total time the pipeline takes.

The data set used for this project had many issues. Ex-
tracting the plain text from the PDF files correctly took a
long time to get right. For example, many PDF files were
corrupted. The biggest problem was the fact that there were
11 PDF files in the entire 5 million PDF file data set that
caused the workers to freeze indefinitely. No exceptions were
thrown, they just stopped working. Finding the PDF files
that were causing this problem was like finding a needle in
a haystack, and so it set the project back for a week to fix
these issues. Because of this, there was barely any time left
to implement the improvements mentioned above.

7. REFERENCES
[1] Apache. Apache Parquet.

https://parquet.apache.org/.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022, 2003.

[3] LiteraryTerms. Plagiarism: Definition and Examples,
September 2020.
https://literaryterms.net/plagiarism/.

[4] C. U. Press. Cambridge English Dictionary, September
2020. https://dictionary.cambridge.org/
dictionary/english/plagiarism.

[5] Sci-Hub. Sci-Hub Principles, September 2020.
https://sci-hub.ren/#principles.

[6] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of molecular
biology, 147(1):195–197, 1981.

[7] Z. Su, B. R. Ahn, K. Y. Eom, M. K. Kang, J. P. Kim,
and M. K. Kim. Plagiarism detection using the
levenshtein distance and smith-waterman algorithm.
2008 3rd International Conference on Innovative
Computing Information and Control, pages 569–569,
June 2008.

[8] Unpaywall. Data Format, September 2020.
https://unpaywall.org/data-format.

[9] M. Wolf and C. Wicksteed. Datetime formatting based
on iso 8601. September 1997.
https://www.w3.org/TR/NOTE-datetime.

8. APPENDIX

Table 1: Task distribution
Who Tasks

William Ford Data Extraction, Data Clean-
ing, Smith Waterman, Visualisa-
tion Website, Final Report (Sec-
tions 1, 2, 3, 4.2, 4.3.2)

Lars de Jong Data Analysis, Data Cleaning,
LDA implementation, Result
graphs & charts, Final Report
(Sections 4.3.1, 4.3.3, 4.3.4, 4.3.5,
5, 6)

Max Raams Data Extraction, Data Analysis,
Visualisation, Result analysis, Fi-
nal Report (Sections 4.1, 4.3.1,
4.3.2)

7


